Improved Goldschmidt division method using mapping of divisors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

A Parametric Error Analysis of Goldschmidt?s Division Algorithm

Back in the 60’s Goldschmidt presented a variation of Newton-Raphson iterations for division that is well suited for pipelining. The problem in using Goldschmidt’s division algorithm is to present an error analysis that enables one to save hardware by using just the right amount of precision for intermediate calculations while still providing correct rounding. Previous implementations relied on...

متن کامل

Improving Goldschmidt Division, Square Root, and Square Root Reciprocal

ÐThe aim of this paper is to accelerate division, square root, and square root reciprocal computations when the Goldschmidt method is used on a pipelined multiplier. This is done by replacing the last iteration by the addition of a correcting term that can be looked up during the early iterations. We describe several variants of the Goldschmidt algorithm, assuming 4-cycle pipelined multiplier, ...

متن کامل

Polynomial Division and Greatest Common Divisors

It is easy to see that there is at most one pair of polynomials (q(x), r(x)) satisfying (1); for if (q1(x), r1(x)) and (q2(x), r2(x)) both satisfy the relation with respect to the same polynomial u(x) and v(x), then q1(x)v(x)+r1(x) = q2(x)v(x)+r2(x), so (q1(x)− q2(x))v(x) = r2(x)−r1(x). Now if q1(x)− q2(x) is nonzero, we have deg((q1 − q2) · v) = deg(q1 − q2)+deg(v) ≥ deg(v) > deg(r2 − r1), a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China Information Sciences

سال: 2013

ISSN: 1674-733X,1869-1919

DOI: 10.1007/s11432-013-4996-1